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A Simple Proot of the Upper Bound Theorem

N. ALoNT anD G. Kavart

Let ¢(m, d) be the number of i-dimensional faces of a cyclic d-polytope on n vertices. We
present a simple new proof of the upper bound theorem for convex polytopes, which asserts that
the number of i-dimensional faces of any d-polylope on n vertices is at most «,(n, d). Our proof
applies for arbitrary shellable triangulations of (d — 1) spheres. Our method provides also a simple
proof of the upper bound theorem for d-representable complexes.

1. INTRODUCTION

Let ¢i(n, d) be the number of i dimensional faces of a cyclic d-polytope on 1 vertices.
In this note we present a simple proof of the upper bound theorem (UBT) for convex
pa.’,mpes which asserts that the number of i-dimensional faces of any d-polytope on n
vertices is at most ¢;(n, d). We will consider only simplicial polytopes, since it is well
known that it suffices to prove the UBT in this case ([8, p. 80],[13, sect. 2.5]).

The UBT was conjectured by Motzkin in 1957 [14], and proved by McMullen in 1970
([12],[13, chp. 5]). Another proof was given by Bondesen and Brgnsted [2]. Stanley [15]
proved that the assertion of the UBT holds also for triangulations of (d — 1)-spheres (see
also [7], [10] and [16]).

McMullen’s proof uses a fundamental result of Bruggesser and Mani [3], which asserts
that the boundary complex of a convex polytope is shellable. This notion is crucial also
here, and in fact our proof applies for arbitrary shellable triangulations of (d — 1)-spheres.

Our method supplies also a simple proof of a theorem conjectured by Katchalski and
Perles and proved independently by Eckhoff [5] and by the second author [9]. This
theorem asserts that if % is a family of n convex sets in RY and % has no intersecting
subfamily of size d+r+1, then the number of intersecting k-subfamilies of X for

d<k=d-+ris at most
g fn—r ¥
.Eu( i ) (k_i)-

Equality holds, e.g. if ¥ ={K,, ..., K.} where K,=K,=: =K, =R* and K,.,, ..., K,
are hyperplanes in general position in R".

2. ON THE NUMBER OF ELEMENTARY COLLAPSES

We begin with @ combinatorial lemma. Equivalent formulations of it were proved by
Frankl [6] and by the second author [9], and a generalization was proved by the first
author [1]. Here we present a short proof, following the approach of [1].

LemMMA 2.1. Suppose n>1, N={1,2,...,n} and 1<=s<m=n. For 1<i=h let A,
and B, be subsets of N thar satisfy
|Al=s and |B|=m, for 1=<i=<h (2.1)
A,cB, for lsi<h (2.2)
A;« B, for l=si<js=sh (2.3)
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hs("~m+s),
s

Proor. Clearly we may assume that [A|=s for 1=i=h. Let V=R""™"" be the
(n—m+ s)-dimensional real space and let v, v,,..., v, be vectors in general position in
V (i.e. every set of =n—m+s of them is linearly independent). Let A V denote the
exterior algebra over V, equipped with the usual wedge product A (see [4] or [11] for
general information on exterior algebra).

For 1=<i<h define y=A, ., €A’V and 7= A,y 0 By (2.1), (2.2) and the
general position of the s,

Then

yiap#0, for 1=si<h, (2.4)
By (2.3)
yiny, =0, for 1=i<j=h (2.5)

To complete the proof we show that the set {y;: 1 <i<h} is linearly independent in
A" V and thus Asdim(A’ V)=(""7""). Indeed, suppose this is false and let

L Gyi=0 (2.6)
lel

be a linear dependence, with ¢, # 0 for i€ I. Put j=max{i: i€ I}. Combining (2.5) and
(2.6) we obtain 0=(Y,_, c.yi) A% =¢ - ¥ Ay, which, together with (2.4), supplies the
contradiction ¢; =0.

A face S of a simplicial complex C is free if S is contained in a unique maximal face
M of C. The operation of deleting S and all faces that contain it is an elementary-collapse.
If the size of S is s and the size of M is m, it is called an elementary-(s, m)-collapse. A
collapse process on C is a sequence C = Cy> C, >+ - 2 C, of simplicial complexes such
that for 1=i=1 C, is obtained from C,_, by an elementary-collapse.

The following lemma plays a crucial role in our proofs.

LEMMA 2.2.  Let s, m be nonnegative integers, 5 < m, and let C be a simplicial complex
on n vertices. The number of all elementary-(s', m')-collapses, with s'< s and m'=m, in
any collapse process on C, is at most (" 7).

PrROOF. Let C=Cy>C,2-::-2C, be a collapse process on C. Let S; and M, be the
free face and the maximal face, corresponding to the ith elementary-collapse, 1=i<1¢,
Let (A, B_,—}}’,, be the subsequence of (S, M;)I., consisting of those pairs (S, M;) with
|S|=s and *M,-I = m. One can easily check that A, B, (1 =i= h) satisfy the hypotheses
of Lemma 2.1. Therefore h=<(""7"%).

3. Tue Upper Bounp THEOREM FOR SHELLABLE SPHERES

Let C be a triangulation of a (d —1)-sphere on a set N={1,2,..., n} of n vertices.
Let f = f(c) be the number of i-dimensional faces of C,0=i=d —1, and put f_, = 1. The
h-vector (hg, ..., hy) of C is defined by the equations

”'( ¥ )h l<j<d
PEd\aspal% THIE S

(d)

(See, e.g. [15] or [13, chp. 5] where gi”’ is used for Ay.,).
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As is well known ([8, sect. 9.2], [13, p. 171]) C satisfies the Dehn-Somerville equations
that can be written as

Bi=Rg_s O0=si<[d/2]. (3.2)
For 0<i<d define h; =Y o b Thus
h=h—h_,. (3.3)

Substituting (3.2) and then (3.3) in (3.1) one can express every f; as a linear combination
of {h,: 0=i=[d/2]} with nonnegative coefficients as follows:

[di2] d=i=1 i =
= — h. fi dd d
j; .'?u [(d-j*?) (d-—j-l)] i Br 944

e[ fd-i-1 i " d/2 \-
= Eﬂ [(d—j—f!)_(d —j*‘z)]hi_*_(d‘-j-l)hdn’ for even d.

It is well known (see, e.g. [13, p. 172]) that for the cyclic d-polytope with n vertices (or
any neighbourly d-polytope with n vertices) h,=(""¢/"""), 0= i=[d/2], and thus /i, =
(""", 0=i=[d/2]. In view of (3.4), in order to provc the UBT it is enough to show that

ﬁ,.ss("ﬁ‘,”'). (3.5)

I

(3.4)

We proceed to show that (3.5) is satisfied by any (d ~ 1)-shellable sphere.
For F< N let F denote the set of all subsets of F. C is shellable if its maximal faces
are all of dimension d —1 and can be ordered F,, F., ..., F, so that for

lskst—1 Fkn( U E)=Uéf.

famfit 1 j=1

where G are s, = 1 distinct faces of C of dimension d —2. In this case define, forO=i=1,
Ci= U,H'H E, (thus C,=@). For 1sist(-1put S;= F\N., G, and define S,= @.
One can easily check that S, is a free face of C,_, and C, is obtained from C;_, by deleting
S; and all faces that contain it, i.c. by an elementary (|S;], d)-collapse.

Let g denote the number of elementary (i, d)-collapses in the shelling of C. (i.e.
g =|{k: s, = i})). It is well-known (see [13, p. 175]) that g,=h, 0=i=d. (Indeed, the
number of j-faces deleted in an elementary (i, d)-collapse is (}f,__';} and since C, =&

Jﬂ( d“) f d
—1=sjsd-1.
fi= Eﬂ j+1-i)% or —1<j 1

Therefore g, .. -, 8 satisfy the defining equations (3.1) for the h;s and hence g, = h; for
0=<i=d) Since h; = ZJ_O g 1s just the numbcr of all elementary (i, d)-collapses with
i"< i in the collapse process C=Cy,>C,2+++2C, on C, Lemma 2.2 implies (3.5). This
proves the UBT for shellable tri&ngulations of spheres. Bruggesser and Mani [3] proved
that the boundary complex of any convex polytope is shellable, and thus the UBT for
convex polytopes follows.

4, d-REPRESENTABLE COMPLEXES

Let C be a simplicial complex on the vertex set N. C is d-representable if there exists
a family ¥ ={K,,..., K,} of convex sets in R? such that Se C iff Mis Ki#3. Cis
d-collapsible if there exists a collapse process C=Cy>C,>--->C, in which every
elementary-collapse is of type (d, m) for some m=d and C, has no faces of size =d. In
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this case, let h, denote the number of elementary—(d, d + i)—collapses in the process
(i=0). Clearly in each such collapse precisely (jf.'_d) j-dimensional faces of C were
deleted for d —1=<j=d+i—1. Let f; denote the number of j-dimensional faces of C.
Suppose fy+, =0and put h; =Y _, h(0=<i=<r).(Thus h,,,=0.) Clearlyford = j< d +r—1

r i r = e ] o - .f"'l
Ly hi . h,"‘"hlu. - ] hr( = )‘
f; f-j+z1_d (j+1_d) i-rpgl—hd( I](J+l_d) i=_f-rzl—d J_d
i

By Lemma 2.2 E,-s( 3

) for i = 0. Therefore we have:

THeOREM 4.1. Ford=<j=d+r—1 let f; denote the number of faces of dimension j of
a d-collapsible complex on n vertices. If f;.,=0 then

5= £ O CECT)GA-))

This theorem was first proved in [9]. By a fundamental result of Wegner [17], every
d-representable complex is d-collapsible, and thus the assertion of Theorem 4.1 holds
for d-representable complexes.
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