A Simple Proof of the Upper Bound Theorem

N. ALONT AND G. KALAIT

Let $c_i(n, d)$ be the number of *i*-dimensional faces of a cyclic *d*-polytope on *n* vertices. We present a simple new proof of the upper bound theorem for convex polytopes, which asserts that the number of *i*-dimensional faces of any *d*-polytope on *n* vertices is at most $c_i(n, d)$. Our proof applies for arbitrary shellable triangulations of (d-1) spheres. Our method provides also a simple proof of the upper bound theorem for *d*-representable complexes.

1. INTRODUCTION

Let $c_i(n, d)$ be the number of *i* dimensional faces of a cyclic *d*-polytope on *n* vertices. In this note we present a simple proof of the *upper bound theorem* (*UBT*) for convex polytopes, which asserts that the number of *i*-dimensional faces of any *d*-polytope on *n* vertices is at most $c_i(n, d)$. We will consider only simplicial polytopes, since it is well known that it suffices to prove the UBT in this case ([8, p. 80], [13, sect. 2.5]).

The UBT was conjectured by Motzkin in 1957 [14], and proved by McMullen in 1970 ([12], [13, chp. 5]). Another proof was given by Bondesen and Brønsted [2]. Stanley [15] proved that the assertion of the UBT holds also for triangulations of (d-1)-spheres (see also [7], [10] and [16]).

McMullen's proof uses a fundamental result of Bruggesser and Mani [3], which asserts that the boundary complex of a convex polytope is *shellable*. This notion is crucial also here, and in fact our proof applies for arbitrary shellable triangulations of (d-1)-spheres.

Our method supplies also a simple proof of a theorem conjectured by Katchalski and Perles and proved independently by Eckhoff [5] and by the second author [9]. This theorem asserts that if \mathcal{H} is a family of n convex sets in \mathbb{R}^d and \mathcal{H} has no intersecting subfamily of size d+r+1, then the number of intersecting k-subfamilies of \mathcal{H} for $d < k \le d+r$ is at most

$$\sum_{i=0}^{d} \binom{n-r}{i} \cdot \binom{r}{k-i}.$$

Equality holds, e.g. if $\mathcal{H} = \{K_1, \ldots, K_n\}$ where $K_1 = K_2 = \cdots = K_r = \mathbb{R}^d$ and K_{r+1}, \ldots, K_n are hyperplanes in general position in \mathbb{R}^d .

2. ON THE NUMBER OF ELEMENTARY COLLAPSES

We begin with a combinatorial lemma. Equivalent formulations of it were proved by Frankl [6] and by the second author [9], and a generalization was proved by the first author [1]. Here we present a short proof, following the approach of [1].

LEMMA 2.1. Suppose n > 1, $N = \{1, 2, ..., n\}$ and $1 \le s \le m \le n$. For $1 \le i \le h$ let A_i and B_i be subsets of N that satisfy

$$|A_i| \le s$$
 and $|B_i| \ge m$, for $1 \le i \le h$. (2.1)

$$A_i \subset B_i$$
, for $1 \le i \le h$. (2.2)

$$A_i \not\subset B_i, \quad \text{for } 1 \le i < j \le h.$$
 (2.3)

[†] Research supported in part by the Weizmann Fellowship for Scientific Research

Then

$$h \leq \binom{n-m+s}{s}.$$

PROOF. Clearly we may assume that $|A_i| = s$ for $1 \le i \le h$. Let $V = \mathbb{R}^{n-m+s}$ be the (n-m+s)-dimensional real space and let v_1, v_2, \ldots, v_n be vectors in general position in V (i.e. every set of $\le n-m+s$ of them is linearly independent). Let $\bigwedge V$ denote the exterior algebra over V, equipped with the usual wedge product \bigwedge (see [4] or [11] for general information on exterior algebra).

For $1 \le i \le h$ define $y_i = \bigwedge_{j \in A_i} v_j \in \bigwedge^s V$ and $\bar{y}_i = \bigwedge_{k \in N \setminus B_i} v_k$. By (2.1), (2.2) and the general position of the $v_i s$,

$$y_i \wedge \bar{y}_i \neq 0$$
, for $1 \leq i \leq h$. (2.4)

By (2.3)

$$y_i \wedge \bar{y}_i = 0$$
, for $1 \le i < j \le h$. (2.5)

To complete the proof we show that the set $\{y_i: 1 \le i \le h\}$ is linearly independent in $\bigwedge^s V$ and thus $h \le \dim(\bigwedge^s V) = \binom{n-m+s}{s}$. Indeed, suppose this is false and let

$$\sum_{i \in I} c_i y_i = 0 \tag{2.6}$$

be a linear dependence, with $c_i \neq 0$ for $i \in I$. Put $j = \max\{i: i \in I\}$. Combining (2.5) and (2.6) we obtain $0 = (\sum_{i \in I} c_i y_i) \wedge \bar{y}_j = c_j \cdot y_j \wedge \bar{y}_j$, which, together with (2.4), supplies the contradiction $c_j = 0$.

A face S of a simplicial complex C is free if S is contained in a unique maximal face M of C. The operation of deleting S and all faces that contain it is an elementary-collapse. If the size of S is s and the size of M is m, it is called an elementary-(s, m)-collapse. A collapse process on C is a sequence $C = C_0 \supset C_1 \supset \cdots \supset C_t$ of simplicial complexes such that for $1 \le i \le t$ C_i is obtained from C_{i-1} by an elementary-collapse.

The following lemma plays a crucial role in our proofs.

LEMMA 2.2. Let s, m be nonnegative integers, $s \le m$, and let C be a simplicial complex on n vertices. The number of all elementary-(s', m')-collapses, with $s' \le s$ and $m' \ge m$, in any collapse process on C, is at most $\binom{n-m+s}{s}$.

PROOF. Let $C = C_0 \supset C_1 \supset \cdots \supset C_t$ be a collapse process on C. Let S_i and M_i be the free face and the maximal face, corresponding to the *i*th elementary-collapse, $1 \le i \le t$. Let $(A_j, B_j)_{j=1}^h$ be the subsequence of $(S_i, M_i)_{i=1}^h$ consisting of those pairs (S_i, M_i) with $|S_i| \le s$ and $|M_i| \ge m$. One can easily check that A_i , B_i $(1 \le i \le h)$ satisfy the hypotheses of Lemma 2.1. Therefore $h \le \binom{n-m+s}{s}$.

3. THE UPPER BOUND THEOREM FOR SHELLABLE SPHERES

Let C be a triangulation of a (d-1)-sphere on a set $N = \{1, 2, ..., n\}$ of n vertices. Let $f = f_i(c)$ be the number of i-dimensional faces of C, $0 \le i \le d-1$, and put $f_{-1} = 1$. The h-vector $(h_0, ..., h_d)$ of C is defined by the equations

$$f_{j} = \sum_{i=0}^{j+1} {d-i \choose d-j-1} h_{i}, \qquad -1 \le j \le d-1.$$
 (3.1)

(See, e.g. [15] or [13, chp. 5] where $g_k^{(d)}$ is used for h_{k+1}).

As is well known ([8, sect. 9.2], [13, p. 171]) C satisfies the Dehn-Somerville equations that can be written as

$$h_i = h_{d-h} \qquad 0 \le i \le [d/2].$$
 (3.2)

For $0 \le i \le d$ define $\tilde{h}_i = \sum_{j=0}^i h_j$. Thus

$$h_i = \tilde{h_i} - \tilde{h_{i-1}}. \tag{3.3}$$

Substituting (3.2) and then (3.3) in (3.1) one can express every f_i as a linear combination of $\{\tilde{h}_i: 0 \le i \le \lfloor d/2 \rfloor\}$ with nonnegative coefficients as follows:

$$f_{j} = \sum_{i=0}^{\lfloor d/2 \rfloor} \left[\begin{pmatrix} d-i-1 \\ d-j-2 \end{pmatrix} - \begin{pmatrix} i \\ d-j-2 \end{pmatrix} \right] \tilde{h}_{i}, \qquad \text{for odd } d$$

$$f_{j} = \sum_{i=0}^{\lfloor d/2 \rfloor} \left[\begin{pmatrix} d-i-1 \\ d-j-2 \end{pmatrix} - \begin{pmatrix} i \\ d-j-2 \end{pmatrix} \right] \tilde{h}_{i} + \begin{pmatrix} d/2 \\ d-j-1 \end{pmatrix} \tilde{h}_{d/2}, \qquad \text{for even } d.$$

$$(3.4)$$

It is well known (see, e.g. [13, p. 172]) that for the cyclic *d*-polytope with *n* vertices (or any neighbourly *d*-polytope with *n* vertices) $h_i = \binom{n-d+i-1}{i}$, $0 \le i \le \lfloor d/2 \rfloor$, and thus $\tilde{h_i} = \binom{n-d+i}{i}$, $0 \le i \le \lfloor d/2 \rfloor$. In view of (3.4), in order to prove the UBT it is enough to show that

$$\tilde{h_i} \leqslant \binom{n-d+i}{i}. \tag{3.5}$$

We proceed to show that (3.5) is satisfied by any (d-1)-shellable sphere.

For $F \subseteq N$ let \overline{F} denote the set of all subsets of F. C is shellable if its maximal faces are all of dimension d-1 and can be ordered F_1, F_2, \ldots, F_t so that for

$$1 \leq k \leq t-1$$
 $\vec{F}_k \cap \left(\bigcup_{i=k+1}^t \vec{F}_i\right) = \bigcup_{j=1}^{s_k} \vec{G}_j^k$

where G_j^k are $s_k \ge 1$ distinct faces of C of dimension d-2. In this case define, for $0 \le i \le t$, $C_i = \bigcup_{k=i+1}^t \bar{F}_k$ (thus $C_i = \emptyset$). For $1 \le i \le t-1$ put $S_i = F_i \setminus \bigcap_{j=1}^{s_i} G_j^i$ and define $S_i = \emptyset$. One can easily check that S_i is a free face of C_{i-1} and C_i is obtained from C_{i-1} by deleting S_i and all faces that contain it, i.e. by an elementary $(|S_i|, d)$ -collapse.

Let g_i denote the number of elementary (i, d)-collapses in the shelling of C. (i.e. $g_i = |\{k: s_k = i\}|$). It is well-known (see [13, p. 175]) that $g_i = h_i$, $0 \le i \le d$. (Indeed, the number of j-faces deleted in an elementary (i, d)-collapse is $\binom{d-i}{j+1-i}$ and since $C_i = \emptyset$

$$f_j = \sum_{i=0}^{j+1} {d-i \choose j+1-i} g_i$$
, for $-1 \le j \le d-1$.

Therefore g_0, \ldots, g_d satisfy the defining equations (3.1) for the h_i s and hence $g_i = h_i$ for $0 \le i \le d$.) Since $\tilde{h_i} = \sum_{j=0}^{i} g_j$ is just the number of all elementary (i', d)-collapses with $i' \le i$ in the collapse process $C = C_0 \supset C_1 \supset \cdots \supset C_t$ on C, Lemma 2.2 implies (3.5). This proves the UBT for shellable triangulations of spheres. Bruggesser and Mani [3] proved that the boundary complex of any convex polytope is shellable, and thus the UBT for convex polytopes follows.

4. d-REPRESENTABLE COMPLEXES

Let C be a simplicial complex on the vertex set N. C is d-representable if there exists a family $\mathcal{H} = \{K_1, \ldots, K_n\}$ of convex sets in \mathbb{R}^d such that $S \in C$ iff $\bigcap_{i \in S} K_i \neq \emptyset$. C is d-collapsible if there exists a collapse process $C = C_0 \supset C_1 \supset \cdots \supset C_t$ in which every elementary-collapse is of type (d, m) for some $m \geqslant d$ and C_i has no faces of size $\geqslant d$. In

this case, let h_i denote the number of elementary—(d, d+i)—collapses in the process $(i \ge 0)$. Clearly in each such collapse precisely $\binom{i+1-d}{j+1-d}$ j-dimensional faces of C were deleted for $d-1 \le j \le d+i-1$. Let f_j denote the number of j-dimensional faces of C. Suppose $f_{d+r} = 0$ and put $\tilde{h}_i = \sum_{j=1}^r h_j (0 \le i \le r)$. (Thus $\tilde{h}_{r+1} = 0$.) Clearly for $d \le j \le d+r-1$

$$f_j = \sum_{i=j+1-d}^r h_i \binom{i}{j+1-d} = \sum_{i=j+1-d}^r (\tilde{h_i} - \tilde{h_{i+1}}) \binom{i}{j+1-d} = \sum_{i=j+1-d}^r \tilde{h_i} \binom{i-1}{j-d}.$$

By Lemma 2.2 $\tilde{h}_i \leq \binom{n-i}{d}$ for $i \geq 0$. Therefore we have:

THEOREM 4.1. For $d \le j \le d + r - 1$ let f_j denote the number of faces of dimension j of a d-collapsible complex on n vertices. If $f_{d+r} = 0$ then

$$f_j \leq \sum_{i=j+1-d}^r {n-i \choose d} {i-1 \choose j-d} \left(= \sum_{i=0}^d {n-r \choose i} {r \choose j+1-i} \right).$$

This theorem was first proved in [9]. By a fundamental result of Wegner [17], every d-representable complex is d-collapsible, and thus the assertion of Theorem 4.1 holds for d-representable complexes.

REFERENCES

- 1. N. Alon, An extremal problem for sets with applications to graph theory, J. Combin. Theory, Ser. A. (to appear).
- A. Bondesen and A. Brønsted, A dual proof of the upper bound conjecture for convex polytopes, Math. Scand. 46 (1980), 95-102.
- 3. H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, Math. Scand. 29 (1971), 197-205.
- 4. N. Bourbaki, Algebra I, Addison-Wesley, 1974.
- 5. J. Eckhoff, to appear.
- 6. P. Frankl, An extremal problem for two families of sets, Europ. J. Combinatorics 3 (1982), 125-127.
- A. M. Garsia, Combinatorial methods in the theory of Cohen Macaulay rings, Advances in Math. 38 (1980), 229-266.
- 8. B. Grünbaum, Convex Polytopes, Wiley-Interscience, London, 1967.
- 9. G. Kalai, Intersection patterns of convex sets, Israel J. Math. (to appear).
- B. Kind and P. Kleinschmidt, Schälbare Cohen-Macauley-Komplexe und ihre Parametrisierung, Math. Z. 167 (1979), 173-179.
- 11. M. Marcus, Finite Dimensional Multilinear Algebra, Part II, Ch. 4, M. Dekker Inc., New York, 1975.
- 12. P. McMullen, The maximum numbers of faces of a convex polytope, Mathematika 17 (1970), 179-184.
- P. McMullen and G. C. Shephard, Convex Polytopes and the Upper Bound Conjecture, Lond. Math. Soc. Lect. Note Ser. 3, University Press, Cambridge, 1971.
- 14. T. S. Motzkin, Comonotone curves and polyhedra, Abstr. 111, Bull. Am. Math. Soc. 63 (1957), 35.
- R. P. Stanley, The upper bound conjecture and Cohen-Macauley rings, Studies Applied Math., LIV (2) (1975), 135-142.
- 16. R. P. Stanley, Combinatorics and Commutative Algebra, Birkhäuser, Boston, 1983.
- 17. G. Wegner, d-collapsing and nerves of families of convex sets, Arch. Math. 26 (1975), 317-321.

Received 2 February 1984

N. ALON AND G. KALAI
Department of Mathematics,
Massachusetts Institute of Technology,
Cambridge, MA 02139, U.S.A.